HOMEWORK (SECTION 9.9)

Theorem (The Remainder Estimation Theorem) If the function f can be differentiated n+1 times in an open interval containing x_0 , and if M is an upper bound for $|f^{n+1}(x)|$ in the interval, that is, $|f^{n+1}(x)| \leq M$ for all x in the interval, then

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}$$

for all x in the interval.

Also, please understand the meaning of the remainder $R_n(x)$. In particular, if one uses an *n*th Taylor polynomial $P_n(x)$ to approximate f(x), then the remainder $R_n(x)$ (i.e. the error) is

$$R_n(x) = f(x) - P_n(x).$$

So, if $R_n \to 0$ as $n \to \infty$, then the Taylor series for f converges to the function f(x).

Please do the following homework problems.

1. Let $f(x) = e^x$.

- (a) Find the Taylor polynomial $P_4(x)$ for f(x) about $x_0 = 1$. Also find the *n*th Taylor polynomial $P_n(x)$ as well as the Taylor series for f(x) about $x_0 = 1$.
- (b) Use the Reminder Estimation Theorem to find an upper bound for the remainder R_4 when x is in the interval (-1,3).
- 2. Let $f(x) = \ln(1+x), x > -1$.
 - (a) Find the Maclaurin polynomial P_3 for f(x). Also find the *n*th Maclaurin polynomial $P_n(x)$ as well as the Maclaurin series for f(x).
 - (b) Use the Reminder Estimation Theorem to find an upper bound for the remainder R_3 when x is in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$.